Part IV- Chapter 16	Random Variables
Random variable	A variable, denoted by a capital letter (X, Y, Z etc.), whose value is
	a numerical outcome of a random event.
	The theoretical data (possible outcomes) of a probability model.
Discrete random variable	Has a finite number of possible outcomes.
Continuous random variable	Takes all values in an interval of numbers (infinite or bounded).
Probability model	A function that associates a probability <i>P</i>
	with each value of a discrete random variable <i>X</i> , denoted $P(X = x)$,
	or with any interval of values of a continuous random variable.
Probability histogram	Pictures the probability distribution of a discrete random variable.
	(a relative frequency histogram for a very large number of trials)
Density curve	Pictures the probability distribution of a continuous random variable
	(normal distributions are 1 type)
Expected value of a random	The mean over the long run of a random variable.
variable.	If the random variable is discrete, multiply each possible value by
	the probability that it occurs, and find the sum:
	$\mu_x = E(X) = \Sigma x_i p_i$
Variance of a random variable.	The expected value of the squared deviation from the mean
	$\sigma_x^2 = \operatorname{Var}(X) = \Sigma (x_i - \mu_x)^2 p_i$
Standard deviation of a random	Describes the spread of the model
variable	$\sigma_{x} = SD(X) = \sqrt{Var(X)}$
	$\sigma_{\rm X} = SD({\rm A}) = V$
$\mu_{a+bX} = \underline{\qquad}$	$u + b\mu_X$ (a and b are constants)
$\sigma_{a+bX} = \underline{\qquad}$	$b\sigma_X$
$\mu_{X+Y} = \underline{\qquad} \qquad \mu_{X-Y} = \underline{\qquad}$	$\mu_X + \mu_Y \qquad \mu_X - \mu_Y$
$\sigma_{X\pm Y} = $	$\frac{\mu_X + \mu_Y}{\sqrt{\sigma_X^2 + \sigma_Y^2}} \mu_X - \mu_Y$, if X and Y are independent.
	(Pythagorean Theorem of Statistics)
$X_1 + X_2 \neq \underline{\qquad}$	2X, (X ₁ & X ₂ are distinct random variables with the same μ and σ .
	They aren't like terms)
$\mu_{X1+X2} = _ \mu_{X1-X2} = _$	$\mu_{X1} + \mu_{X2} = 2\mu_X$ $\mu_{X1} - \mu_{X2} = 0$
$\sigma_{X1\pm X2} = $	$\sqrt{\sigma_{X1}^2 + \sigma_{X2}^2} = \sqrt{2\sigma_X^2} = \sigma_X \sqrt{2}$
If two independent continuous random variables have Normal	So does their sum or difference.
models,	
Part IV- Chapter 17	Probability Models
Bernoulli trial	1. two possible outcomes ("success" & "failure")
Demouni unai	2. probability of success is constant p $q = 1 - p$
	3. trials are independent (or sample < 10% of population)
If number, <i>X</i> , of Bernoulli trials	Then Geometric probability model, $Geom(p)$:
until next success	$P(X = x) = q^{x-1}p$
[measuring until success]	
	(Expected # of trials until success) $\mu = \frac{1}{p}$ $\sigma = \sqrt{\frac{q}{p^2}}$
If number of successes, X, in n	Then Binomial probability model, Binom(<i>n</i> , <i>p</i>):
Bernoulli trials	$D(\mathbf{X} - \mathbf{k}) = \begin{pmatrix} n \\ n^k a^{n-k} & \dots & n! \end{pmatrix}$
[number of successes, no when]	$P(X=k) = \left(\frac{n}{k}\right) p^{k} q^{n-k}, where\left(\frac{n}{k}\right) = \frac{n!}{k!(n-k)!}$

	(Expected # of successes) $\mu = np$ $\sigma = \sqrt{npq}$
Assumptions	Theoretical mathematical requirements
	(independence, large sample, etc.)
Conditions	Practical guidelines that confirm (or sometimes override) assumptions.
When using the Geometric or	
Binomial probability models	
check that you have	the 3 requirements of Bernoulli trials.
The Binomial probability model	
becomes difficult/impossible for	
Fortunately it can	large <i>n</i> .
be approximated by	a Normal probability model
as long as we meet the	Success/Failure
Condition that	we expect at least 10 successes and 10 failures:
	$np \ge 10$ and $nq \ge 10$
On the AP Exam students are	
required to, not just	check
the conditions. This	state
means	using the values given in the question to show your work!
Part V- Chapter 18	Sampling Distribution Models (SDMs)
Proportion	Ratio of: $\frac{\text{number of successes}}{\text{total}}$ for categorical data.
	[think percent]
We want to know the true	illustration of the relationship between samples and populations.
population proportion (mean),,	$p_{-}(\mu)$. We want to know about these
but are often forced to	A KK. Bundam
work/estimate with a sample	XXXX Severing XX
proportion (mean),	$\hat{p}(\bar{x})$
	Population
	X A X
	Parameter Statistic
Sampling variability	No sample fully and exactly describes the population; sample
(sampling error)	proportions and means will vary from sample to sample.
	It is not just unavoidable – it's predictable! (with SDMs)
Sampling Distribution Model	Shows how a statistic (sample proportion or mean) would vary in
(SDM)	repeated (think infinite) samples of size n .
	We used to focus on the data, and derive the statistics from it. Now
	we focus on the statistic itself. The sample proportion (or mean)
	becomes our datum, and in our imaginations we compare that
	statistic to all other values we might have obtained from all the other
	samples of size n we might have taken.
The sample proportion, \hat{p} , does	
not have a binomial distribution	
because it is not the	number of successes
But the SDM for a proportion	
appears to be	unimodal
uppents to be	

and When certain	roughly symmetric
conditions are met, the	Normal model
is a good SDM for a proportion.	
Assumptions / Conditions for	Assumptions:
using a Normal model as the	1. Independent - sampled values must be independent of each other.
SDM for a proportion:	Conditions:
SDW for a proportion.	
	a) Randomization – SRS or at least representative and not biased.
	b) 10% Condition – If sampling w/o replacement
	Then $n \le 10\%$ of the population.
	2. Sample Size - <i>n</i> , must be large enough.
	Conditions:
	a) Success/Failure - $np \ge 10$ and $nq \ge 10$.
Since the number of successes	
in the sample, X, is,	a Binomial random variable (n trials, probability p)
we can obtain the mean and SD	a Dinomia failaoni (a alao), producinty p
of the sample proportion by	$\mu(\hat{p}) = p$ $\sigma(\hat{p}) = SD(\hat{p}) = \sqrt{\frac{pq}{n}}$
multiplying the mean and SD of	$\mu(p) - p \qquad O(p) - SD(p) - \sqrt{n}$
the Binomial by the constant 1/n	, ,
to get:	
	$N\left(p,\sqrt{\frac{pq}{n}}\right)$
	(p, \sqrt{n})
When we can understand and	
When we can understand and	
predict the variability of our	we've taken the essential step toward seeing past that variability, so
estimates with SDMs,	we can understand the world.
Means summarize	
data	quantitative
As long as the observations are	
, even if we sample from	independent
a skewed or bimodal population	1
the tells us	Central Limit Theorem
that the means (or proportions)	
of repeated random samples	a Namual madal
will tend to follow	a Normal model
as	the sample size grows.
Central Limit Theorem (CLT)	The sampling distribution model of the sample mean (and
	proportion) is approximately Normal for large <i>n</i> , regardless of the
[the fundamental theorem of statistics]	distribution of the population, as long as the observations are
	independent.
Assumptions / Conditions for	Assumptions:
using a Normal model as the	1. Independent - sampled values must be independent of each other.
SDM for a mean:	Conditions:
	a) Randomization – SRS or at least representative and not biased.
	b) 10% Condition – If sampling w/o replacement
	Then $n \le 10\%$ of the population.
	2. Sample Size - <i>n</i> , must be large enough. (More on this later)
	Conditions:
	a) For now, <i>Think</i> about your sample size in the context of what
	you know about the population, and then <i>Tell</i> whether the

	Large Enough Sample Condition has been met.
Unlike proportions, if we know	
the true population mean, μ , we	
don't automatically know the	standard deviation of the population, σ .
For means the sampling	
distribution is centered at	
and its standard	the true population mean $\mu(x) = \mu$
deviation declines with the So the Normal	the true population mean $\mu(\overline{x}) = \mu$ square root of the sample size $\sigma(\overline{x}) = SD(\overline{x}) = \frac{\sigma}{\sqrt{n}}$
Model representing the SDM for a mean is	
	$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
Law of Diminishing Returns	Larger <i>n</i> yields smaller $\sigma(\overline{x})$ therefore \overline{x} can tell us more about μ
	Unfortunately <i>n</i> only decreases $\sigma(\overline{x})$ at a rate of $\frac{1}{\sqrt{n}}$
Standard Error	If we don't know p or σ , then we must estimate the standard deviation of a sampling distribution with \hat{p} or s .
	$SE(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}}$ $SE(\bar{x}) = \frac{s}{\sqrt{n}}$
Part V- Chapter 19	Confidence Intervals for Proportions
SDM for a proportion when we	We don't know where to center our model and the best we can do
don't know <i>p</i> .	for $\sigma(\hat{p})$ is the $SE(\hat{p})$
	The resulting model is: $N\left(p, \sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$
	However, this still doesn't show us the value of <i>p</i> . The best we can
	do is to reach out with the $SE(\hat{p})$ on either side of \hat{p} to create a
	confidence interval in an attempt to capture <i>p</i> .
Statistical inference	To use the sample we have at hand to say something about the world
	at large. In this case, we utilize the SDM of \hat{p} to express our
	confidence in the results of any one sample.
Confidence interval	offers a range of plausible values for a model's parameter.
[<i>p</i> -trap]	For example: $\hat{p} \pm 2 \times SE(\hat{p})$
One-proportion <i>z</i> -interval [Official Name give to this type	$\hat{p} \pm z^* \times SE(\hat{p})$
of confidence interval]	
Margin of error	How far the confidence interval reaches out from \hat{p}
(ME)	
	$\hat{p} \pm z * \times SE(\hat{p})$
* Z	Critical value – the number of standard errors to move away from
	the mean of the sampling distribution to correspond to the specified
	level of confidence.
To calculate z* for a particular level of confidence	$z^* = \left invNorm\left(\frac{1 - confidence \ level}{2}\right) \right $
Assumptions / Conditions to	(See your inference guide)
	(See Jour motorioo Burgo)

check before creating (and	
believing) a confidence interval	
about a proportion:	
The more confident we want to	
be	the larger the margin of error must be.
Every confidence interval is a	
balance between and	certainty and precision.
The time to think about your	
margin of error, to see whether	
it's small enough to be useful, is	when you design your study or experiment and decide on <i>n</i> .
To get a narrower interval	You need to have less variability in your sample proportion, \hat{p} ,
(decrease the ME) without	by choosing a larger sample, <i>n</i> .
giving up confidence,	
Law of Diminishing Returns	The larger the sample size, n , we have the narrower our confidence
	interval can be (at the rate of $\frac{1}{\sqrt{n}}$)
To calculate the sample size, <i>n</i> ,	Solve for <i>n</i> in:
necessary to reach conclusions	
that have a desired margin of	$ME = z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$
error (degree of precision) and	
level of confidence:	by substituting:
	ME = desired margin of error (as a decimal)
	z^* = critical value for desired level of confidence
	\hat{p} = estimate based on experience or 0.5 (most cautious)
	$\hat{q} = 1 - \hat{p}$
Part V- Chapter 20	q = 1 - p Testing Hypotheses About Proportions
Part V- Chapter 20Are the data consistent with the	
	Testing Hypotheses About Proportions
Are the data consistent with the	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknowntrue population proportion, p .
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknowntrue population proportion, p .
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknowntrue population proportion, p .
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknowntrue population proportion, p .
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About Proportions We hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0 q_0}{n}}\right)$
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?)
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?)
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?)
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsTesting Hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0 q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0 q_0}{n}}$ Second use our standard normal model to change z-scores into
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the
Are the data consistent with the hypothesized SDM for a	Testing Hypotheses About ProportionsWe hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p} , (or one more extreme) given the original
Are the data consistent with the hypothesized SDM for a proportion?	Testing Hypotheses About Proportions We hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model. First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p} , (or one more extreme) given the original model is true.
Are the data consistent with the hypothesized SDM for a proportion?	Testing Hypotheses About Proportions We hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model. First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p} , (or one more extreme) given the original model is true. Proposes a parameter, p_0 , and hypothesized value for an original
Are the data consistent with the hypothesized SDM for a proportion?	Testing Hypotheses About Proportions We hypothesize a value, p_0 , to construct a model for the unknown true population proportion, p . $N\left(p_0, \sqrt{\frac{p_0q_0}{n}}\right)$ Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model. First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?) $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})}$ where $SD(\hat{p}) = \sqrt{\frac{p_0q_0}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p} , (or one more extreme) given the original model is true.

Alternative hypothesis, H _A [actual hypothesis] [that there is a real effect]	Represents the change or difference that we are interested in (what you want to show), usually a range of other possible values. The position we will have to take if the results are so unusual as to make the null hypothesis untenable. However, even when we reject the null hypothesis, we won't know the true value of the population parameter. (that is why we follow up with confidence intervals)
Two-sided alternative hypothesis	$H_{A:} p \neq p_0$ We are interested in deviations in <i>either</i> direction away from the hypothesized parameter value.
One-sided alternative hypothesis	$H_{A:} p > p_0$ or $H_{A:} p < p_0$ We are interested in deviations in <i>only one</i> direction away from the hypothesized parameter value.
Hypothesis are about not	parameters not statistics (so no hats)
Hypothesis tests and confidence intervals share many of the same concepts.	Both rely on sampling distribution models, and because the models are the same and require the same assumptions, both check the same conditions.
Assumptions / Conditions for testing hypotheses about a proportion:	(See your inference guide)
One-proportion <i>z</i> -test	A test of the null hypothesis by referring the statistic $z = \frac{(\hat{p} - p_0)}{SD(\hat{p})} \text{where } SD(\hat{p}) = \sqrt{\frac{p_0 q_0}{n}}$ to a standard normal model to find a P-value.
P-value [Probability-value] [% in tail(s) for a z-score]	The probability of observing a result at least as extreme as ours if the null hypothesis were true. A small value indicates either that the observation is improbable or that the probability calculation was based on incorrect assumptions. The assumed truth of the null hypothesis is the assumption under suspicion.
How low a P-value do we need?	Traditional: adopt a level of significance (alpha) of 10%,5%,1% etc Modern: think about what it says about the situation under consideration, and then make a decision.
A low P-value can never	
confirm that,	the model is correct
but it can convince us	(beyond a reasonable doubt) that it is wrong.
Follow up a rejection of a hypothesis with	a confidence interval that estimates the true value of the parameter
Am I surprised?	Should I reject the null hypothesis?
How surprised am I? What would not surprise me?	What's the P-value? Write a confidence interval for the parameter
What would not surprise me? 4-steps needed for inference problems:	Write a confidence interval for the parameter. (See your inference guide)
(based on the College Board's	
rubrics for the AP Exam)	More about Tosts
Part V- Chapter 21	More about Tests The threshold P value selected in advance that determines
Alpha level, α	The <u>threshold P-value</u> selected in advance that determines
	when we reject a null hypothesis, H_0 . If we observe a statistic (\hat{p}) whose P-value based on the null
	If we observe a statistic (p) whose r-value based off the fiult

	hypothesis is less than α , we reject that null hypothesis.
Statistically significant	When the P-value falls below the alpha level, we say that the test is
Statistically significant	"statistically significant" at that alpha level.
	(But this doesn't necessarily have any practical importance.)
Significance level	The alpha level is also called the significance level, most often in a
Significance level	phrase such as a conclusion:
	"we reject the null hypothesis at the 5% significance level."
Don't just reject/fail to reject	H_0
	Alpha/significance
at an level. Report the as an indication of	P-value
	r-value
the strength of the evidence.	Type I amon the null hypothesis is true but we mistaly also tit
When we perform a hypothesis	Type I error – the null hypothesis is true, but we mistakenly reject it.
test we can make mistakes in	Type II error – the null hypothesis is false, but we fail to reject it.
two ways:	
The more serious mistake is	depends on the situation.
Type I error, α	The error of rejecting a null hypothesis, H ₀ , when in fact it is true
	(also called a "false positive").
	The probability of a Type I error is α , the chosen alpha level.
	(It happens when H_0 is true but we've had the bad luck of drawing
	an unusual sample.)
Type II error, β	The error of failing to reject a null hypothesis, H ₀ , when in fact it is false
	(also called a "false negative").
	The probability of a Type II error is β . It is difficult to calculate
	because when H_0 is false, we don't know what value the
	parameter, p, really is.
Power	$1 - \beta$ The probability of correctly rejecting a false null hypothesis, H ₀ .
Reducing α to lower Type	Ι
error will move	the critical value, p^* ,
and have the effect of increasing	
the probability of a Type	П
error,, and correspondingly	β
reducing	the power.
Effect size	$p - p_0$ How far the truth, p, lies from the null hypothesis, p_0 .
The larger the effect size, the	
the chance of making a	smaller
Type error and the greater	II
the of the test.	power
Whenever a study fails to reject	
its null hypothesis,	the test's power comes into question.
H_0 may be false but our test is	too weak to tell.
If we reduce Type I error, we	
automatically must	increase
Type II error. But there is a	
way to reduce both:	we need to make both SDM curves narrower \rightarrow by decreasing the
, , , , , , , , , ,	spread (SD) \rightarrow by increasing <i>n</i> (However the benefits are muted by
	the Law of Diminishing Returns)
The gives us the	hypothesis test
answer to a decision about a	

parameter; the	confidence interval
tells us the plausible values of	
that parameter.	
You can approximate a	hypothesis
by examining the confidence	
interval. Specifically, a	a two-sided hypothesis test with an α level of $100 - C\%$
confidence level of C%	
corresponds to	a one-sided hypothesis test with an α level of $\frac{1}{2}(100-C\%)$
Part V- Chapter 22	Comparing Two Proportions
The sampling distribution of	A Normal model with:
$\hat{p}_1 - \hat{p}_2$ is, under appropriate assumptions, modeled by	$\mu = p_1 - p_2 \qquad SD(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (See your inference guide)
Assumptions / Conditions for	(See your inference guide)
using a Normal model as the	
SDM for a difference between	
two proportions:	
(Also confidence intervals and	
testing hypotheses)	
Two-proportion <i>z</i> -interval (confidence interval for $p_1 - p_2$)	$(\hat{p}_1 - \hat{p}_2) \pm z^* \times SE(\hat{p}_1 - \hat{p}_2)$ where $SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$
Two-proportion <i>z</i> -test	$H_0: p_1 - p_2 = 0.$
	Because we hypothesize that the proportions are equal, we pool the
	groups to find an overall proportion:
	$\hat{p}_{pooled} = \frac{\#Success_1 + \#Success_2}{n_1 + n_2}$
	$P_{pooled} - n_1 + n_2$
	and use that pooled value to estimate the standard error:
	$SE_{pooled}(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_1} + \frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_2}}$
	Now refer the statistic
	$z = \frac{(\hat{p}_{1} - \hat{p}_{2}) - 0}{SE_{pooled}(\hat{p}_{1} - \hat{p}_{2})}$
	to a standard normal model to find a P-value.