Part IV- Chapter 16	Random Variables
Random variable Discrete random variable Continuous random variable	A variable, denoted by a capital letter ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ etc.), whose value is a numerical outcome of a random event. The theoretical data (possible outcomes) of a probability model. Has a finite number of possible outcomes. Takes all values in an interval of numbers (infinite or bounded).
Probability model	A function that associates a probability P with each value of a discrete random variable X, denoted $P(X=x)$, or with any interval of values of a continuous random variable.
Probability histogram	Pictures the probability distribution of a discrete random variable. (a relative frequency histogram for a very large number of trials)
Density curve	Pictures the probability distribution of a continuous random variable (normal distributions are 1 type)
Expected value of a random variable.	The mean over the long run of a random variable. If the random variable is discrete, multiply each possible value by the probability that it occurs, and find the sum: $\mu_{x}=E(X)=\Sigma x_{i} p_{i}$
Variance of a random variable.	The expected value of the squared deviation from the mean $\sigma_{\mathrm{x}}^{2}=\operatorname{Var}(\mathrm{X})=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{x}}\right)^{2} p_{i}$
Standard deviation of a random variable	Describes the spread of the model $\sigma_{\mathrm{x}}=\mathrm{SD}(\mathrm{X})=\sqrt{\operatorname{Var}(\mathrm{X})}$
$\begin{aligned} & \mu_{a+b X}= \\ & \sigma_{a+b X}= \end{aligned}$	$a+b \mu_{X} \quad$ (a and b are constants) $b \sigma_{X}$
$\begin{aligned} \mu_{X+Y} & = \\ \sigma_{X \pm Y} & = \end{aligned} \mu_{X-Y}=.$	$\mu_{X}+\mu_{Y} \quad \mu_{X}-\mu_{Y}$ $\sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}}$, if X and Y are independent. (Pythagorean Theorem of Statistics)
$\begin{aligned} & \mathrm{X}_{1}+\mathrm{X}_{2} \neq \ldots \\ & \mu_{X 1+X 2}= \\ & \sigma_{X 1 \pm X 2}= \end{aligned} \mu_{X 1-X 2}=$ \qquad	$2 \mathrm{X},\left(\mathrm{X}_{1} \& \mathrm{X}_{2}\right.$ are distinct random variables with the same μ and σ. They aren't like terms) $\begin{aligned} & \mu_{X 1}+\mu_{X 2}=2 \mu_{X} \\ & \sqrt{\sigma_{X 1}^{2}+\sigma_{X 2}^{2}}=\sqrt{\mu_{X 1}-\mu_{X 2}}=0 \\ & 2 \sigma_{X}^{2}=\sigma_{X} \sqrt{2} \end{aligned}$
If two independent continuous random variables have Normal models,	So does their sum or difference.
Part IV- Chapter 17	Probability Models
Bernoulli trial	1. two possible outcomes ("success" \& "failure") 2. probability of success is constant $\quad p \quad q=1-p$ 3. trials are independent (or sample $<10 \%$ of population)
If number, X, of Bernoulli trials until next success [measuring until success]	Then Geometric probability model, $\operatorname{Geom}(p)$: $P(X=x)=q^{x-1} p$ (Expected \# of trials until success) $\mu=\frac{1}{p} \quad \sigma=\sqrt{\frac{q}{p^{2}}}$
If number of successes, X, in n Bernoulli trials [number of successes, no when]	Then $\operatorname{Binomial}$ probability model, $\operatorname{Binom}(n, p)$: $P(X=k)=\left(\frac{n}{k}\right) p^{k} q^{n-k}, \text { where }\left(\frac{n}{k}\right)=\frac{n!}{k!(n-k)!}$

	(Expected \# of successes) $\mu=n p \quad \sigma=\sqrt{n p q}$
Assumptions	Theoretical mathematical requirements (independence, large sample, etc.)
Conditions	Practical guidelines that confirm (or sometimes override) assumptions.
When using the Geometric or Binomial probability models check that you have \qquad	the 3 requirements of Bernoulli trials.
The Binomial probability model becomes difficult/impossible for \qquad . Fortunately it can be approximated by \qquad as long as we meet the \qquad Condition that \qquad	large n. a Normal probability model Success/Failure we expect at least 10 successes and 10 failures: $n p \geq 10 \quad \text { and } \quad n q \geq 10$
On the AP Exam students are required to \qquad , not just \qquad the conditions. This means	check state using the values given in the question to show your work!
Part V- Chapter 18	Sampling Distribution Models (SDMs)
Proportion	Ratio of: $\frac{\text { number of successes }}{\text { total }}$ for categorical data. [think percent]
We want to know the true population proportion (mean), but are often forced to work/estimate with a sample proportion (mean), \qquad	
Sampling variability (sampling error)	No sample fully and exactly describes the population; sample proportions and means will vary from sample to sample. It is not just unavoidable - it's predictable! (with SDMs)
Sampling Distribution Model (SDM)	Shows how a statistic (sample proportion or mean) would vary in repeated (think infinite) samples of size n. We used to focus on the data, and derive the statistics from it. Now we focus on the statistic itself. The sample proportion (or mean) becomes our datum, and in our imaginations we compare that statistic to all other values we might have obtained from all the other samples of size n we might have taken.
The sample proportion, \hat{p}, does not have a binomial distribution because it is not the \qquad But the SDM for a proportion appears to be \qquad	number of successes unimodal

and \qquad When certain conditions are met, the \qquad is a good SDM for a proportion.	roughly symmetric Normal model
Assumptions / Conditions for using a Normal model as the SDM for a proportion:	Assumptions: 1. Independent - sampled values must be independent of each other. Conditions: a) Randomization - SRS or at least representative and not biased. b) 10% Condition - If sampling w/o replacement Then $\mathrm{n} \leq 10 \%$ of the population. 2. Sample Size $-n$, must be large enough. Conditions: a) Success/Failure $-n p \geq 10$ and $n q \geq 10$.
Since the number of successes in the sample, X , is \qquad we can obtain the mean and SD of the sample proportion by multiplying the mean and SD of the Binomial by the constant $1 / n$ to get:	a Binomial random variable (n trials, probability p) $\begin{array}{ll} \mu(\hat{p})=p & \sigma(\hat{p})=S D(\hat{p})=\sqrt{\frac{p q}{n}} \\ N\left(p, \sqrt{\frac{p q}{n}}\right) & \end{array}$
When we can understand and predict the variability of our estimates with SDMs, \qquad	we've taken the essential step toward seeing past that variability, so we can understand the world.
Means summarize \qquad data	quantitative
As long as the observations are \qquad , even if we sample from a skewed or bimodal population the \qquad tells us that the means (or proportions) of repeated random samples will tend to follow \qquad as \qquad	independent Central Limit Theorem a Normal model the sample size grows.
Central Limit Theorem (CLT) [the fundamental theorem of statistics]	The sampling distribution model of the sample mean (and proportion) is approximately Normal for large n, regardless of the distribution of the population, as long as the observations are independent.
Assumptions / Conditions for using a Normal model as the SDM for a mean:	Assumptions: 1. Independent - sampled values must be independent of each other. Conditions: a) Randomization - SRS or at least representative and not biased. b) 10% Condition - If sampling w/o replacement Then $n \leq 10 \%$ of the population. 2. Sample Size - n, must be large enough. (More on this later) Conditions: a) For now, Think about your sample size in the context of what you know about the population, and then Tell whether the

	Large Enough Sample Condition has been met.
Unlike proportions, if we know the true population mean, μ, we don't automatically know the	standard deviation of the population, σ.
For means the sampling distribution is centered at \qquad and its standard deviation declines with the \qquad So the Normal Model representing the SDM for a mean is \qquad	the true population mean $\mu(\bar{x})=\mu$ square root of the sample size $\sigma(\bar{x})=S D(\bar{x})=\frac{\sigma}{\sqrt{n}}$ $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
Law of Diminishing Returns	Larger n yields smaller $\sigma(\bar{x})$ therefore \bar{x} can tell us more about μ Unfortunately n only decreases $\sigma(\bar{x})$ at a rate of $\frac{1}{\sqrt{n}}$
Standard Error	If we don't know p or σ, then we must estimate the standard deviation of a sampling distribution with \hat{p} or s. $S E(\hat{p})=\sqrt{\frac{\hat{p} \hat{q}}{n}} \quad S E(\bar{x})=\frac{s}{\sqrt{n}}$
Part V- Chapter 19	Confidence Intervals for Proportions
SDM for a proportion when we don't know p.	We don't know where to center our model and the best we can do for $\sigma(\hat{p})$ is the $\operatorname{SE}(\hat{p})$ The resulting model is: $N\left(p, \sqrt{\frac{\hat{p} \hat{q}}{n}}\right)$ However, this still doesn't show us the value of p. The best we can do is to reach out with the $S E(\hat{p})$ on either side of \hat{p} to create a confidence interval in an attempt to capture p.
Statistical inference	To use the sample we have at hand to say something about the world at large. In this case, we utilize the SDM of \hat{p} to express our confidence in the results of any one sample.
Confidence interval [p-trap]	offers a range of plausible values for a model's parameter. For example: $\hat{p} \pm 2 \times S E(\hat{p})$
One-proportion z-interval [Official Name give to this type of confidence interval]	$\hat{p} \pm z^{*} \times S E(\hat{p})$
Margin of error (ME)	How far the confidence interval reaches out from \hat{p} $\hat{p \pm z^{*} \times S E(\hat{p})}$
z^{*}	Critical value - the number of standard errors to move away from the mean of the sampling distribution to correspond to the specified level of confidence.
To calculate z^{*} for a particular level of confidence....	$z^{*}=\mid \text { invNorm } \left.\left(\frac{1-\text { confidence level }}{2}\right) \right\rvert\,$
Assumptions / Conditions to	(See your inference guide)

check before creating (and believing) a confidence interval about a proportion:	
The more confident we want to be...	the larger the margin of error must be.
Every confidence interval is a balance between \qquad and	certainty and precision.
The time to think about your margin of error, to see whether it's small enough to be useful, is	when you design your study or experiment and decide on n.
To get a narrower interval (decrease the $M E$) without giving up confidence,	You need to have less variability in your sample proportion, \hat{p}, by choosing a larger sample, n.
Law of Diminishing Returns	The larger the sample size, n, we have the narrower our confidence interval can be (at the rate of $\frac{1}{\sqrt{n}}$)
To calculate the sample size, n, necessary to reach conclusions that have a desired margin of error (degree of precision) and level of confidence:	Solve for n in: $M E=z^{*} \sqrt{\frac{\hat{p} \hat{q}}{n}}$ by substituting: $M E=$ desired margin of error (as a decimal) $z^{*}=$ critical value for desired level of confidence $\hat{p}=$ estimate based on experience or 0.5 (most cautious) $\hat{q}=1-\hat{p}$
Part V- Chapter 20	Testing Hypotheses About Proportions
Are the data consistent with the hypothesized SDM for a proportion?	We hypothesize a value, p_{0}, to construct a model for the unknown true population proportion, p. $N\left(p_{0}, \sqrt{\frac{p_{0} q_{0}}{n}}\right)$ Then we test the sample proportion, \hat{p}, to see if it lends support to the hypothesis or casts doubt on the viability of the model. First find how many standard deviations \hat{p} is from p_{0} (you do remember the z -score from Unit I-F don't you?) $z=\frac{\left(\hat{p}-p_{0}\right)}{S D(\hat{p})} \quad \text { where } S D(\hat{p})=\sqrt{\frac{p_{0} q_{0}}{n}}$ Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p}, (or one more extreme) given the original model is true.
Null hypothesis, H_{0} [originull skeptical hypothesis] [the normal chance outcome]	Proposes a parameter, p_{0}, and hypothesized value for an original population model that nothing interesting happened, or nothing has changed. $\mathrm{H}_{0}: p=p_{0}$ (hypothesized value)

Alternative hypothesis, H_{A} [actual hypothesis] [that there is a real effect]	Represents the change or difference that we are interested in (what you want to show), usually a range of other possible values. The position we will have to take if the results are so unusual as to make the null hypothesis untenable. However, even when we reject the null hypothesis, we won't know the true value of the population parameter. (that is why we follow up with confidence intervals)
Two-sided alternative hypothesis	$\mathrm{H}_{\mathrm{A}:}: p \neq p_{0}$ We are interested in deviations in either direction away from the hypothesized parameter value.
One-sided alternative hypothesis	$\mathrm{H}_{\mathrm{A}:} p>p_{0} \text { or } \mathrm{H}_{\mathrm{A}}: p<p_{0}$ We are interested in deviations in only one direction away from the hypothesized parameter value.
Hypothesis are about __ not __	parameters not statistics (so no hats)
Hypothesis tests and confidence intervals share many of the same concepts.	Both rely on sampling distribution models, and because the models are the same and require the same assumptions, both check the same conditions.
Assumptions / Conditions for testing hypotheses about a proportion:	(See your inference guide)
One-proportion z-test	A test of the null hypothesis by referring the statistic $z=\frac{\left(\hat{p}-p_{0}\right)}{S D(\hat{p})} \quad$ where $S D(\hat{p})=\sqrt{\frac{p_{0} q_{0}}{n}}$ to a standard normal model to find a P-value.
P-value [Probability-value] [\% in tail(s) for a z -score]	The probability of observing a result at least as extreme as ours if the null hypothesis were true. A small value indicates either that the observation is improbable or that the probability calculation was based on incorrect assumptions. The assumed truth of the null hypothesis is the assumption under suspicion.
How low a P-value do we need?	Traditional: adopt a level of significance (alpha) of $10 \%, 5 \%, 1 \%$ etc Modern: think about what it says about the situation under consideration, and then make a decision.
A low P-value can never confirm that \qquad but it can convince us \qquad	the model is correct (beyond a reasonable doubt) that it is wrong.
Follow up a rejection of a hypothesis with \qquad	a confidence interval that estimates the true value of the parameter
Am I surprised? How surprised am I? What would not surprise me?	Should I reject the null hypothesis? What's the P -value? Write a confidence interval for the parameter.
4-steps needed for inference problems: (based on the College Board's rubrics for the AP Exam)	(See your inference guide)
Part V- Chapter 21	More about Tests
Alpha level, α	The threshold P-value selected in advance that determines when we reject a null hypothesis, H_{0}. If we observe a statistic (\hat{p}) whose P -value based on the null

	hypothesis is less than α, we reject that null hypothesis.
Statistically significant	When the P-value falls below the alpha level, we say that the test is "statistically significant" at that alpha level. (But this doesn't necessarily have any practical importance.)
Significance level	The alpha level is also called the significance level, most often in a phrase such as a conclusion: "we reject the null hypothesis at the 5% significance level."
Don't just reject/fail to reject at an \qquad level. Report the \qquad as an indication of the strength of the evidence.	H_{0} Alpha/significance P -value
When we perform a hypothesis test we can make mistakes in two ways: The more serious mistake is	Type I error - the null hypothesis is true, but we mistakenly reject it. Type II error - the null hypothesis is false, but we fail to reject it. depends on the situation.
Type I error, α	The error of rejecting a null hypothesis, H_{0}, when in fact it is true (also called a "false positive"). The probability of a Type I error is α, the chosen alpha level. (It happens when H_{0} is true but we've had the bad luck of drawing an unusual sample.)
Type II error, β	The error of failing to reject a null hypothesis, H_{0}, when in fact it is false (also called a "false negative"). The probability of a Type II error is β. It is difficult to calculate because when H_{0} is false, we don't know what value the parameter, p, really is.
Power	$1-\beta$ The probability of correctly rejecting a false null hypothesis, H_{0}.
Reducing α to lower Type error will move \qquad and have the effect of increasing the probability of a Type \qquad error, \qquad , and correspondingly reducing \qquad	I the critical value, p^{*}, II β the power.
Effect size	$p-p_{0} \quad$ How far the truth, p, lies from the null hypothesis, p_{0}.
The larger the effect size, the \qquad the chance of making a Type \qquad error and the greater the \qquad of the test.	smaller II power
Whenever a study fails to reject its null hypothesis, \qquad H_{0} may be false but our test is ..	the test's power comes into question. too weak to tell.
If we reduce Type I error, we automatically must \qquad Type II error. But there is a way to reduce both:	increase we need to make both SDM curves narrower \rightarrow by decreasing the spread (SD) \rightarrow by increasing n (However the benefits are muted by the Law of Diminishing Returns)
The \qquad gives us the answer to a decision about a	hypothesis test

parameter; the \qquad tells us the plausible values of that parameter.	confidence interval
You can approximate a \qquad by examining the confidence interval. Specifically, a confidence level of C\% corresponds to \qquad	hypothesis a two-sided hypothesis test with an α level of $100-\mathrm{C} \%$ a one-sided hypothesis test with an α level of $\frac{1}{2}(100-C \%)$
Part V- Chapter 22	Comparing Two Proportions
The sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is, under appropriate assumptions, modeled by ...	A Normal model with: $\mu=p_{1}-p_{2} \quad S D\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}$
Assumptions / Conditions for using a Normal model as the SDM for a difference between two proportions: (Also confidence intervals and testing hypotheses)	(See your inference guide)
Two-proportion z-interval (confidence interval for $p_{1}-p_{2}$)	$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z^{*} \times S E\left(\hat{p}_{1}-\hat{p}_{2}\right) \text { where } S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}$
Two-proportion z-test	$\mathrm{H}_{0}: p_{1}-p_{2}=0$. Because we hypothesize that the proportions are equal, we pool the groups to find an overall proportion: $\hat{p}_{\text {pooled }}=\frac{\# \text { Success }_{1}+\# \text { Success }_{2}}{n_{1}+n_{2}}$ and use that pooled value to estimate the standard error: $S E_{\text {pooled }}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{\text {pooled }} \hat{q}_{\text {pooled }}}{n_{1}}+\frac{\hat{p}_{\text {pooled }} \hat{q}_{\text {pooled }}}{n_{2}}}$ Now refer the statistic $z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{S E_{\text {pooled }}\left(\hat{p}_{1}-\hat{p}_{2}\right)}$ to a standard normal model to find a P -value.

